Исследование марса: марсоходы spirit, opportunity и curiosity на планете марс

Исследование Марса: марсоходы Spirit, Opportunity и Curiosity на планете Марс

MarsExplorationRover– это знаменитая программа NASA, направленная на всестороннее исследование планеты Марс.

В рамках данной программы практически одновременно на поверхность «красной планеты» были доставлены два марсохода – Spirit и Opportunity.

В 2012 году, в связи с выходом из строя аппарата Spirit и с постановкой новых научных задач, NASA доставляет на поверхность планеты марсоход нового поколения Curiosity, который ощутимо больше и тяжелее своих предшественников.

Первые шаги по планете Марс: Spirit и Opportunity

Марсоход Spirit опустился на поверхность Марса 3 января 2004 года. Opportunity присоединился к нему уже 25 января того же года. Что касается третьего всемирно известного марсохода Curiosity, то он достиг поверхности Марса 6 августа 2012 года, и сразу же приступил к работе.

Нужно сказать, что Spirit осуществил ряд интересных открытий.

В частности, по результатам проб марсианского грунта, сделанных этим аппаратом, учёные смогли выдвинуть гипотезу о том, что в прошлом на Марсе были отличные условия для жизни микроорганизмов.

Не смотря на то, что миссия этого марсохода должна была продлиться 90 дней, его использовали свыше шести лет. Связь со Spirit прервалась 23 июля 2010 года.

Opportunity, прибывший на три недели позже, чем Spirit работает до сих пор. Нужно отметить, что именно Opportunity смог найти на Марсе следы целого пересохшего океана. Кроме того, ему принадлежат очень точные измерения различных параметров марсианской атмосферы.

Исследование Марса Curiosity

Марсоход Curiosity – это не просто прекрасный марсианский вездеход нового поколения, но ещё и довольно крупная автономная химическая лаборатория.

Основной задачей использования данного аппарата является проведение целого ряда глубоких исследований грунта и атмосферы.

Сейчас марсоход занимается изучением геологической истории «красной планеты» в кратере Гейла, где есть возможность работать с глубинными грунтами.

Марсоход, который весит на Земле 900 кг 3 метра длины и 2,7 метра ширины, имеет 3 пары колес диаметром 50 см, способен передвигаться в любом направлении и передавать на Землю данные о проб грунта, снимки с поверхности планеты и другую ценную информацию. Ожидаемое время миссии 1 марсианский год, что равно 687 земных дней.

Первая цель после посадки, которую NASA Curiosity благополучно совершил 6 августа этого года в кратер Гейла диаметром в 150 км, стало путешествие к подножью горы Шарпа. Сама гора имеет высоту 5,5 км.

Задача изучить версию воздействия водных потоков, которыми когда-то подвергались склоны горы Шарпа, но на данный момент марсоход на месте посадки обнаружил не так много воды, как того ожидалось по расчетам, всего 1,5%.

А ведь предполагали ее наличие от 5,6 до 6,5%.

Основные результаты работы Curiosity состоят в том, что им была определена двухслойность марсианского грунта. Первый, так называемый сухой слой, практически не содержит воды. В то же время, на глубине свыше 40 см. содержание воды составляет порядка 4%.

И вот, получены качественные при помощи наложенных фильтров снимки с марса, который передал марсоход Curiosity. На одном из снимков виднеется подножье горы Шарпа к которой следует Curiosity.

Тем не менее, первые данные настоящей хроники с Марса получены. Температура окружающего воздуха +3 градуса по Цельсию и несколько любопытных снимков, на одном из них хорошо видна гора Шарпа к которой движется марсоход. Правда, достигнет ее он только к новому году на земле, ведь его скорость очень низкая, всего 0,14 км/ч.

(Видео поверхности планеты Марс, переданное марсоходом Curiosity)

Перед тем, как направиться к горе, марсоход NASA Curiosity проверил всю аппаратуру, сделал множество снимков, пошевелил буром и опробовал лазерную пушку, назначение которой не защита от марсиан, а сбор анализа образцов почвы и воздуха на расстоянии.

На данный момент из трёх марсоходов, запущенных в период с 2003 года, на Марсе работают два. За это время сделано множество научных открытий разных масштабов.

Ведущие мировые эксперты полагают, что основой успеха американских марсоходов является умение их создателей учиться на собственных ошибках. Соответственно, каждый новый аппарат становится более совершенным, чем его предшественники.

Любопытный факт. Сотрудники Nasa предусмотрели вариант первого знакомства с «марсианами». Так после приземления, марсоход первым делом обратился с приветствием к пустынной планете голосом директора NASA Чарльза Болдена и переслал на землю песню Will.I.Am.

Источник: https://xn—-8sbiecm6bhdx8i.xn--p1ai/Curiosity.html

Марсоходы, орбитальные станции — первооткрыватели на Красной планете

Для исследования космических объектов, помимо телескопов и орбитальных станций, применяются планетоходы. Эти устройства доставляются на поверхность другой планеты,  собирать информацию о составе грунта или атмосферы. Всего, начиная с середины 1960 годов, к Марсу было отправлено 14 марсоходов. Но свою миссию выполнили не все.

Кто на орбите Марса

Марс – объект пристального изучения учёными. Для того, что бы узнать больше о Красной планете, люди отправили множество разных зондов и орбитальных станций. Такие аппараты позволили многое узнать о рельефе, атмосфере, магнитном поле Марса. А один марсианский зонд ищет следы метана в атмосфере Марса.

Неудачные миссии для орбиты

Не все запуски орбитальных аппаратов к Марсу были удачными. Первые пять космических аппаратов были отправлены к Марсу СССР. И ни одну из миссий нельзя считать успешной. Марс 1960А, Марс 1960В, Марс 1962А и Марс 1962В не смогли даже выйти на орбиту Земли. Аппарат Марс-1 достиг Марса, но вследствие технических проблем больше не вышел на связь.

Первый американский спутник Mariner 3, отправленный в сторону Марса, так же не добрался до пункта назначения. Солнечные батареи не раскрылись, и полёт был завершен. Такая же неудача постигла советский аппарат Зонд-2.

В 1969 году СССР осуществило запуск ещё двух исследовательских зондов, Марс 1969А и Марс 1969 В. Попытка оказалась неудачной, так как при выводе на орбиту Земли случилась авария. Впрочем, такая же участь постигла и Mariner 8.

Отечественные зонды Космос 419 и Марс 2 не смогли добраться до красной планеты, по причине ошибки в программировании систем управления. А аппараты Фобос 1 и Фобос Грунт не выполнили миссию по причине неверной навигационной команды и срыве запуска маршевых двигателей соответственно.

Первый Японский космический аппарат, отправленный на Марс, из-за ошибки в маневрировании сошёл с курса и раньше времени закончил свою работу.

Станция Polar Lander должна была приземлиться на поверхность Марса, но после вхождения в атмосферу, связь была потеряна.

Спутники, работающие сегодня

В настоящее время на орбите красной планеты работает 6 космических станций и зондов, непрерывно ведущих работу по изучению Марса. Самый старый из находящихся на орбите — Mars Odyssey, запущенный в 2001 году и призванный изучить геологическое строение.

Mars Express – спутник Европейского Космического Агентства, и запущенный с космодрома Байконур в 2003 году. Оборудование на борту станции позволило обнаружить под поверхностью планеты жидкую воду.

Mars Reconnaissance Orbiter – аппарат, созданный для создания карты поверхности Марса. Запущен в космос в 2006 году.

Mars Orbiter Mission (Мангальян) – спутник, созданный в Индии, и запущенный в 2013 году. Основное предназначение – сбор информации об атмосфере и ландшафте Марса.

Maven – запущенный в 2013 году, должен прийти на замену Mars Odyssey и стать новым ретранслятором данных с аппаратов, на поверхности Марса.

Самым современным и новым на орбите четвертой планеты является Trace Gas Orbiter. Эта станция отправлена в космос в 2016 году. Главная цель – «продукт» биологической или геологический активности. В первую очередь это газ Метан.

Какие марсоходы были отправлены на поверхность планеты

На поверхность Марса было отправлено много станций и марсоходов. Успешно совершили посадку и начали работу не все. Первыми успешными исследовательскими модулями стали аппараты Viking-1 и Viking-2. Первый марсоход, который смог перемещаться по поверхности Марса – Sojourner. Далее были Spirit, Opportunity и Curiosity.

Неудачные миссии

Неудачи в отправке марсоходов преследовали, как и СССР, и США, и даже Великобританию. Первые марсоходы отправились на Марс с территории СССР. Это были Марс-1 и Марс-2. Если Марс-2 смог проработать чуть более 14 секунд, то Марс-1 разбился при посадке.

Первый США – Mars Surveyor 98. В одной миссии было собрано несколько разных станций, но все разбились из-за аварии.

В 2003 году неудача постигла и аппарат Бигль, запущенный Великобританией. Судя по фотографиям с орбиты, у него не раскрылись солнечные батареи.

Завершенные миссии на поверхности

Помимо орбитальных станций и зондов, на Марс были отправлены аппараты для работы на поверхности планеты:

Mars Pathfinder – аппарат, доставивший на поверхность первый марсоход «Соджорнер». Этот аппарат изучал химический состав грунта, атмосферу и метеорологические особенности Марса. Был оснащен камерой, и передавал панорамные снимки поверхности.

Spirit (MER-A) – марсоход. Изучал грунт и атмосферу. Фото Спирита позволили предположить существование на Марсе пресной воды в древности.

Phoenix – станция, призванная изучать геологию Марса, а так же искать признаки существования жизни.

Текущие миссии на поверхности Марса

На поверхности Марса и сейчас работают аппараты, доставляющие на Землю бесценную информацию о Красной планете. Один из них — Марсоход Opportunity, запущенный аэрокосмическим агентством NASA в 2004 году.

Основная цель аппарата – изучить осадочные породы в местах, где по предположениям учёных, в древности находилось море или озеро. В процессе работы Opportunity должен был искать и классифицировать горные породы и минералы, фиксировать их распространение и состав.

Так же марсоход проводил химический анализ грунта. Это делалось с целью найти элементы, которые могли образоваться с участием воды.

Opportunity изначально был рассчитан на 90 марсианских дней работы. Но по ряду успешно функционирует уже 13 лет с момента посадки. За это время на Землю было передано огромное количество информации, а сам ровер преодолел более 45 километров по поверхности Марса.

На сегодняшний день, связь с марсоходом потеряна. Причиной тому – мощнейшая пылевая буря, бушующая на планете. Учёные ждут окончания бури, и надеются на возобновление работы марсохода и продолжение миссии.

Марсианский ровер Curiosity – второй работающий и четвёртый успешный марсоход. Он же последний, на сегодняшний день. Это самый современный и большой из отправленных на Марс аппаратов. Его масса на Земле составляет 900 кг. Такой вес – следствие огромного количества различной исследовательской аппаратуры на борту. По факту, Curiosity везёт на себе целую химическую лабораторию.

Этот марсианский ровер совершил успешную посадку на поверхность Марса 6 августа 2012 года. Мягкое приземление было обеспечено использованием нового способа, названного «небесный кран».

Такой способ значительно сложнее, чем использование подушек безопасности, как на предыдущих миссиях.

Но зато скорость посадки была настолько мала, что удар был поглощён шасси марсохода, не имеющим каких либо дополнительных средств амортизации.

Основными целями космической миссии Curiosity является сбор сведений о климате и геологии Марса. Поиск признаков, говорящих о благоприятных условиях жизни на Марсе в прошлом, и подготовиться к высадке человека.

Одним из важнейших открытий на Марсе, сделанных с помощью Curiosity, можно считать обнаружение на Марсе гальки, образованной потоками жидкой воды. Так же проводя исследования, марсоход Кьюриосити нашёл водяной лёд под слоем грунта.

Места посадок марсоходов на Марсе

Марсоход Кьюриосити совершил посадку в кратере Гейла. Место было выбрано не случайно. В этом кратере марсоход сможет подробно изучить геологическую историю Марса, ведь здесь отчетливо видны слои марсианского грунта. Дальнейшей целью Кьюриосити станет изучение горы Шарпа, и воздействием воды на подножия этой горы.

Марсоход Оппортьюнити совершил посадку в кратере Игл, находящийся на плато Меридиана. По данным исследований, это плато в древности было дном марсианского океана.

Марсианский ровер Спирит приземлился и изучал кратер Гусева. По мнениям учёных, этот кратер в прошлом был озером, и как раз по этой причине туда был доставлен космический аппарат. Учёные надеялись исследовать глубинные слои грунта в ударных кратерах. Но надежды не оправдались.

Последней из космических станций, доставленных на Марс, является спускаемый аппарат Скиапарелли. Это результат работы Европейских и российских учёных, запущенный в 2016 году с космодрома Байконур. Основной цель запуска стала отработка методов входа в атмосферу и посадки на поверхность Марса. К сожалению, аппарат разбился о поверхность планеты, из-за сбоя в работе оборудования.

Читайте также:  Башкирский народ: культура, традиции и обычаи

Будущие проекты

NASA планирует в будущем отправить на Марс новый ровер. Под. Планируется, что называться он будет Марс 2020, а за основу будет взята платформа Кьюриосити. Этот шаг позволит значительно сэкономить на разработке новых решений.

Шасси и конструкцию в целом доработают, с учётом новых данных о нахождении марсохода на красной планете.
Остальное оборудование будет другим, более современным и ориентированным на иной подход к работе. В этот раз ставка будет сделана на визуальное наблюдение.

С этой целью на Марс 2020 установят 23 камеры, в том числе с функцией записи звука.

В 2020 году так же планируется отправка китайского марсохода на Марс. Названия аппарат ещё не имеет. Цель полёта – сбор информации о грунте и атмосфере.

Совместный проект Европейского космического агентства и российского Роскосмоса – ЕкзоМарс, предполагает отправку в 2020 году на Красную планету марсохода. В 2016 году первая часть миссии пошла не по плану, когда спускаемый аппарат Скиапарелли разбился о поверхность Марса.

Марсоходы – перспективное направление в изучении Красной планеты. Уровень технического оснащения таких машин с каждым разом становится всё совершеннее, что позволяет совершать невероятные открытия. Доказательством тому служат марсоходы Оппортьюнити и Кьюриосити. Возможно, марсоходы будущего смогут обнаружить то, что на Марсе ищут уже многие годы.

Источник: https://MarsPlaneta.ru/marsohody-orbitalnye-stantsii-pervootkryvateli-na-krasnoj-planete

Марсоходы, побывавшие на Красной планете

Освоение Марса – непростой процесс. И начало ему должны положить вовсе не люди, а марсоходы – полностью автономные аппараты, способные не только перемещаться по поверхности планеты, но и проводить различные исследования и передавать все полученную информацию на Землю.

Такой подход к освоению Марса люди применяют довольно давно, и сейчас благодаря марсоходам об этой планете известно очень много.

Советские марсоходы

Самыми первыми были советские аппараты – Марс-2 и Марс-3, достигшие планеты в 1971 году. Однако им очень не повезло – посадка происходила в условиях сильной пылевой бури и Марс-2 27 ноября 1971 года разбился при посадке.

Марсу-3 удалось приземлиться 2 декабря, и он начал передавать даже картинку, но длилось это всего 14.5 секунд, после чего связь прервалась и что там случилось, до сих пор неизвестно.

Однако миссия не была полностью провалена – орбитальная станция продолжала работать почти год и присылать массу важнейших данных о планете.

Так выглядел советский аппарат Марс-3

Любопытно, что ученые в то время знали о поверхности Марса настолько мало, что было непонятно, как по ней передвигаться. Поэтому советские марсоходы были снабжены подобием лыж – на случай, если Марс покрыт песком, снегом или льдом.

Миссия Viking

Викинг-1 – первый успешно приземлившийся, или примарсившийся на Марсе аппарат. Он был запущен НАСА 20 августа 1975 года, а приземлился 20 июля 1976 года. Он передал первые удачные снимки непосредственно с поверхности планеты, и люди впервые увидели марсианские ландшафты, притом в цвете.

https://www.youtube.com/watch?v=hrU2jT_me90

Миссия состояла из собственно спускаемого аппарата и спутника, который остался на марсианской орбите. Этот спутник проработал до 7 августа 1980 года, а спускаемый модуль – до 11 ноября 1982 года. В итоге при обновлении программы и перезагрузке системы была допущена ошибка и аппарат навсегда замолчал.

Викинг на Марсе

Был еще и Викинг-2, который приземлился в то же время на другой стороне планеты. Этот аппарат проработал 4 года, пока его аккумуляторы полностью не израсходовали свой ресурс.

Викинги – первый реально удачный шаг в освоении Марса, сделанный еще в 70-х — 80-х годах.

Марсоход Sojourner

После Викингов наступило некоторое затишье в изучении и подготовке к освоению Марса. Наконец, в 1996 стартовала ракета Дельта-2 с аппаратами миссии Mars Pathfinder. В итоге на Марсе оказался марсоход Sojourner, который был подвижной частью самой станции Mars Pathfinder. Он съехал с нее и стал работать на местности, в то время как основная станция была неподвижной.

В процессе работы марсоход передал на Землю много фотографий и данные спектрометрии, что позволило лучше разобраться с химическим составом марсианского грунта. Также изучалась атмосфера и изменения температуры.

Несмотря на малые размеры – марсоход Sojourner по габаритам можно сравнить разве что с микроволновкой на колесах, он дал много ценной информации, и проработал он 3 месяца, хотя планировали максимум месяц. Выход из строя, как предполагается, произошел из-за выработанного ресурса батарей – энергия использовалась в том числе для обогрева оборудования в марсианские ночи, без чего быстро вышла из строя.

Марсоход Sojourner изучает камень

Любопытно, что в книге-бестселлере Энди Вейра «Марсианин» главный герой Марк Уотни отправляется в путешествие к Патфайндеру и забирает с собой марсоход Соджорнер, чтобы установить с его помощью связь с Землей.

Программа Mars Surveyor 98 – неожиданный провал

Эта программа НАСА стартовала 3 января 1999 года и предусматривала два режима работы.

Аппарат Mars Climate Orbiter должен был изучать планету, находясь на орбите, и служить ретранслятором для передачи данных на Землю со второго аппарата. Mars Polar Lander должен был спуститься на планету.

Кроме того, на спускаемом модуле имелись зонда-пенетраторы, которые на большой скорости должны были вонзиться в поверхность планеты и передать данные о составе грунта.

Добравшись до Марса 23 сентября, аппарат Mars Climate Orbiter потерпел аварию при выходе на орбиту вокруг планеты.

3 декабря второй аппарат – Mars Polar Lander, вошел в атмосферу для посадки, и больше на связь не вышел.

Поиски сигнала в течении полутора месяцев, в том числе с межпланетной станции, результата не дали.

По итогам этого провала в дальнейшем было решено отказаться от такого метода исследования, когда используется два аппарата в связке – спускаемый и орбитальный. Неудача одного губит всю миссию.

Причинами провала программы Mars Surveyor 98 считают спешку при её подготовке и недостаточное финансирование – оно было минимум на 30% меньше, чем требовалось.

Beagle – 2 – еще одна неудача

Посадочный модуль Бигль-2 был разработан британскими учеными, а название ему было дано в честь корабля, на котором путешествовал Чарльз Дарвин. Миссия «Марс-экспресс» стартовала в 2003 году, но завершилась полной неудачей – модуль сел на Марс, но связь с ним не состоялась.

Лишь в 2015 году, спустя 12 лет, на снимках, сделанный одним из орбитальных аппаратов НАСА, Бигль-2 был опознан и стало понятно, почему он не вышел на связь после посадки.

Солнечные батареи модуля должны были раскрылись полностью, чтобы радиоантенна могла принимать команды со спутника-ретранслятора и передавать данные.

Однако панели раскрылись лишь частично, загородив антенну, и аппарат не смог ничего принять или передать, превратившись в очередной памятник.

Марсоход Spirit

2004 год для НАСА был триумфальным в плане изучения Марса. Сразу несколько запущенных марсоходов успешно достигли Марса и также успешно выполнили свои задачи, а некоторые из них и сейчас работают.

Марсоход Спирит сел на планету 4 января 2004 года, и планировалась его работа в течении 90 солов, за которые ему нужно было преодолеть около 600 метров.

Однако на деле марсоходу помог ветер, сдувавший пыль с солнечных батарей, благодаря чему выработка электроэнергии стала эффективнее, чем планировалось. В итоге Спирит вместо 600 метров преодолел 7.

73 км и проработал до 22 марта 2010 года – более 6 лет!

В последнее время своей работы марсоход использовали как стационарную платформу, так как 1 мая 2009 года он застрял в дюне и вызволить его оттуда не смогли. Несмотря на это, марсоход оставался на связи и продолжал исследования, хотя перемещаться не мог. 22 марта 2010 года марсоход окончательно замолчал, хотя еще целый год специалисты пытались наладить с ним контакт.

Любопытно, что название «Спирит» марсоходу дала русская девочка, которая родилась в Сибири, но была удочерена американцами. Когда НАСА проводило конкурс, это название победило.

Марсоходы Sojourner (маленький), Opportunity (средний) и Curiocity (большой)

Марсоход Opportunity

Марсоход Оппортьюнити сел на поверхность Марса 25 января 2004 года, через 3 недели после Спирита, но по долготе это место было смещено на 180 градусов.

Этот марсоход по конструкции практически идентичен Спириту, то есть их можно считать близнецами.

В отличие от Спирита, Оппортьюнити нигде не застрял (был один случай, но его удалось освободить), и продолжает работать до сих пор, побив все рекорды по долгожительству среди всех марсоходов.

Оппортьюнити – один из наиболее совершенных марсоходов. Он снабжен мощным компьютером (по меркам 2003 года), имеет отличную конструкцию, прекрасное программное обеспечение и множество оборудования.

Например, когда марсоходу приказывают двигаться к какой-либо точке, он проводит анализ местности на наличие опасных и труднопреодолимых мест, затем делает снимки двумя камерами и на основе стереоизображения определяет наиболее легкий маршрут.

Этот процесс периодически повторяется, и напоминает работу обычного зрения.

Работа марсохода была рассчитана на 90 солов (92.5 земных дня), а работает он уже более 13 лет. Данные, переданные им, бесценны. За неоценимый вклад в науку именем этого марсохода даже назвали астероид.

Марсоход Curiosity

Именно к марсоходу Curiosity («Любопытство») сегодня приковано внимание всех неравнодушных людей. Снимки, сделанные этим аппаратом, заполонили интернет, и большое количество людей пытаются рассмотреть на них некие артефакты, из чего потом появляются сенсационные заголовки.

Марсоход Кьюриосити оказался на Марсе в августе 2012 года, и сейчас это пока самый новый и современный аппарат на этой планете. Он же и самый большой — если сравнивать его с предыдущими моделями, то этот просто гигант, на Земле весящий 900 кг, и он даже больше советского «Лунохода».

Этот марсоход представляет собой мощную автономную лабораторию.

Если предыдущие модели имели небольшой набор оборудования, в основном геологического, то здесь есть практически всё – марсоход может как изучать химический состав всего, что попадется на пути, так и искать следы жизни.

Кстати, такое оборудование используется впервые – оно способно изучать молекулярный состав образцов и сможет обнаружить даже обрывки органических молекул, если они попадутся.

Цель марсохода – собрать максимум информации, достаточной для планирования освоения Марса непосредственно человеком в ближайшем будущем. Поэтому он ведет всесторонние исследования с использованием большого набора научных приборов.

17 видеокамер способны вести круговую съемку в высоком качестве со скоростью 10 кадров в секунду – получается практически видеосъемка. Раз в сутки на марсоходом пролетает орбитальный аппарат и марсоход быстро передает ему огромный массив данных, накопленный за это время. Потом уже этот спутник по мощному каналу передает все на Землю.

Иногда Curiosity делает селфи, по которым изучается общее состояние марсохода. Камера расположена на выносной штанге, которая в кадр не попадает.

Питание марсохода также отличается от предыдущих моделей – на нем нет солнечных батарей, а стоит ядерный источник энергии на плутонии-238, который производит как тепло для обогрева оборудования, так и электроэнергию.

Его ресурса хватит еще лет на 20-35, а то и больше. «Вояджеры» с подобной энергоустановкой работаю уже 40 лет, хотя энергия у них уже практически закончилась.

Видеозапись спуска марсохода Curiosity на поверхность Марса, ускоренная в 3 раза:

Читайте также:  Урок-конспект по теме: "времена года"

Описание миссии Curiosity заслуживает отдельной статьи, из-за огромного количества интересной информации.

На этом краткий обзор всех марсоходов, побывавших на Красной планете, закончим. Все они внесли большой вклад в изучение соседнего мира и в подготовку к освоению Марса человеком. На данный момент там работают два марсохода — Opportunity и Curiosity. Возможно, в 2018 году будет запущен российский аппарат.

Источник: https://astro-world.ru/vse-marsoxody-pobyvavshie-na-krasnoj-planete/

Просыпайся, марсоход «Opportunity»! | Живой космос

Прошло уже более двух месяцев с тех пор, как ветеран исследований Марса, шестиколесный покоритель красных пустынь, один из самых успешных роботов NASA – марсоход «Opportunity» последний раз связывался с Землей.

Марсоход, выключив все энергоемкие устройства, застыл на краю обрыва – кратера Индевор, посреди пыльной бури, обдуваемый сухим ветром, несущим по мертвой поверхности красную пыль.

Находясь в этом неуютном и холодном мире уже более 14 лет, «Opportunity» всегда поддерживал связь с Центром управления миссией. Однако нынешняя пыльная буря оказалась настолько мощной, что марсоходу пришлось перейти в режим экономии энергии и остаться в полном одиночестве на холодном ветру.

«Opportunity» находится в спящем режиме с 10 июня, когда концентрация пыли в воздухе Красной планеты стала настолько плотной, что солнечный генератор перестал обеспечивать заряд его батарей.

Команда «Opportunity» надеется, что шестиколесный робот действительно погрузился всего лишь в своего рода спячку, и рассчитывает получить от него сигнал как только пыльная буря рассеется.
И для такого оптимизма есть причины, заявили представители НАСА.

Пыльная буря на Марсе началась в локальных масштабах в конце мая. К 20 июня она превратилась в монстра, накрывшего всю планету. Шторм начал стихать в конце прошлого месяца, но в атмосфере все еще много пыли, возможно, слишком много для того, что бы генераторы «Opportunity» получили возможности подзарядить батареи марсохода.

Ученые отслеживают количество пыли в атмосфере Марса, используя индекс ее непрозрачности под наименованием «тау». Чем ниже тау, тем чище воздух.

Атмосфера в районе местоположения «Opportunity» – края 14-километрового кратера Индевор, имеющего ширину около 14 километров – обычно имеет тау около 0,5, сообщают представители НАСА.

 Последнее зарегистрированное измерение, сделанное марсоходом 10 июня, показало колоссальное значение тау – 10.8.

По словам членов миссии, тау должна быть меньше значения 2.0 для получения солнечными батареями «Opportunity» достаточного количества солнечного света, чтобы начать заряжать батареи. По различным оценкам, значение тау в регионе кратера Индевор варьировалось за последнюю неделю от 2,1 до 2,5, добавили исследователи.

Ученые пытаются установить связь с «Opportunity» несколько раз в неделю, используя для этих целей NASA Deep Space Network, систему больших антенн, расположенных по всему миру.

С помощью их в сторону Марса отправляются команды и сигналы, которые как бы здороваются с роботом во время его плановых «пробуждений», и после этого ждут от него ответа.

Также члены команды марсохода используют другую, более обширную сеть: каждый день они прослушивают все радиосигналы, полученные с Марса, пытаясь обнаружить любой сигнал от «Opportunity», заявили представители НАСА.

В случае если «Opportunity» в конце концов проснется и восстановит контакт с Землей, выпавшее на его долю испытание может в конечном итоге отразиться на работоспособности марсохода.

«Аккумуляторы «Opportunity» могли так сильно разрядиться и так долго оставаться бездействующими, что их емкость и способность к накоплению заряда может катастрофически снизится», – сообщают официальные лица НАСА. «Если аккумуляторы не смогут удерживать необходимое количество заряда, это может повлиять на предстоящие работы с использованием марсохода».

«Opportunity» опустился на поверхность Марса в январе 2004 года, через три недели после высадки здесь своего двойника – марсохода «Спирит».

 Оба робота приступили к рассчитанной на три месяца миссии по поискам признаков прошлой активности воды на Красной планете.

 Дуэт нашел много тому доказательств, а затем продолжал исследовать Марс в течение многих лет после того, как его срок службы истек.

В марте 2010 года «Спирит» увяз в марсианской песчаной ловушке. Марсоход не смог переориентироваться, чтобы поймать Солнце, и замерз следующей зимой. В 2011 году НАСА объявило, что «Спирит» умер.

Другой активный марсианский марсоход NASA, «Curiosity», имеющий размеры автомобиля, имеет ядерную энергетическую установку и, следовательно, гораздо меньше страдает от пыльной бури.

Источник: https://alivespace.ru/prosypajsya-marsohod-opportunity/

Открытия curiosity

Диаметр кратера — свыше 150 километров, в центре располагается конус осадочных пород высотой 5,5 километров — гора  Шарпа. Желтой  точкой отмечено место посадки марсохода  Curiosity — Bradbury Landing (Посадка Брэдбери)

Космический аппарат опустился почти в центре заданного эллипса недалеко от Aeolis Mons (Эолида, гора Шарпа) — главной научной цели миссии.Путь Curiosity в кратере Гейла (6.08.2012 посадка —  1.08.2018, Sol 2128)

На маршруте отмечены основные участки научных работ. Белая линия — южная граница эллипса посадки. За шесть лет марсоход проехал около 20 км и прислал свыше 400 тыс. фотоснимков Красной планеты

(NASA/JPL-Caltech/Univ. of Arizona)

Curiosity собрал образцы «подземного» грунта на 16 участках

(по данным NASA/JPL)

Марсоход Curiosity на хребте Веры Рубин (Vera Rubin Ridge)

С высоты хорошо видны район выветренных холмов Murray Buttes, темные пески Bagnold Dunes и равнина Aeolis Palus (Эолидское болото) перед северным валом кратера Гейла. Высокий пик стенки кратера справа снимка находится на расстоянии около 31.5 км от марсохода, а его высота составляет ~ 1200 метров

(камера Navcam, 3 ноября 2017 года, Sol 1864)

 Восемь основных задач Марсианской научной лаборатории:      1.Обнаружить и установить природу марсианских органических углеродных соединений.      2.Обнаружить вещества, необходимые для существования жизни: углерод, водород,         азот, кислород, фосфор, серу.      3.Обнаружить следы возможных биологических процессов.      4.Определить химический состав марсианской поверхности.      5.Установить процесс формирования марсианских камней и почвы.      6.Оценить процесс эволюции марсианской атмосферы в долгосрочном периоде.      7.Определить текущее состояние, распределение и круговорот воды и углекислого газа.      8.Установить спектр радиоактивного излучения поверхности Марса.Свою главную задачу — поиск условий, благоприятных когда-либо для обитания микроорганизмов — Curiosity выполнил, исследовав высохшее русло древней марсианской реки в низине Yellowknife Bay. Марсоход обнаружил веские доказательства того, что на этом месте было древнее озеро и оно было пригодно для поддержания простейших форм жизни.

Марсоход Curiosity в Yellowknife Bay

На горизонте возвышается величественная гора Шарпа (Aeolis Mons, Эолида)

(NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer)

Другими важными результатами являются:
— Оценка естественного уровня радиации во время полета на Марс и на марсианской поверхности; эта оценка необходима для создания радиационной защиты пилотируемого полета на Марс

— Первое измерение возраста горных пород на Марсе и оценка времени их разрушения непосредственно на поверхности под действием космической радиации. Эта оценка позволит выяснить временные рамки водного прошлого планеты, а также темпы разрушения древней органики в камнях и почве Марса

(Марсоход Curiosity меняет стратегию поиска органики,  Обитаемость, тафономия и охота Curiosity за органическим углеродом)

— Центральная насыпь кратера Гейла — гора Шарпа — была сформирована из слоистых отложений осадочных пород в древнем озере на протяжении десятков миллионов лет

(Марсоход Curiosity открывает тайну рождения Эолиды)

— Марсоход обнаружил десятикратное увеличение содержания метана в атмосфере Красной планеты и отыскал органические молекулы в пробах грунта

Марсоход Curiosity на южной границе эллипса посадки 27 июня 2014 года, Sol 672

(Снимок камеры HiRISE орбитального зонда Mars Reconnaissance Orbiter)

С сентября 2014 года по март 2015 марсоход исследовал холмистую возвышенность «Pahrump Hills» (Парампские Холмы). По мнению планетологов, она представляет собой выход коренных пород центральной горы кратера Гейла и геологически не относится к поверхности его дна. С этого времени Curiosity приступил к изучению горы Шарпа.

Вид на возвышенность «Pahrump Hills»

Отмечены места бурения плиток «Confidence Hills» ,»Mojave 2″ и «Telegraph Peak». На заднем плане слева видны склоны горы Шарпа, вверху — обнажения горных пород Whale Rock, Salsberry Peak и Newspaper Rock. Вскоре MSL отправился к более высоким склонам горы Шарпа через ложбину под названием «Artist's Drive» 

(NASA/JPL)

Камера высокого разрешения HiRISE орбитального зонда Mars Reconnaissance Orbiter увидела ровер 8 апреля 2015 года с высоты 299 км.

Марсоход Curiosity в ложбине «Artist's Drive»

Север сверху. Изображение охватывает область шириной около 500 метров. Светлые участки рельефа — осадочные горные породы, темные — покрыты песком

(NASA/JPL-Caltech/Univ. of Arizona)

Ровер постоянно проводит съемку местности и некоторых объектов на ней, осуществляет мониторинг окружающей среды инструментами RAD, REMS и DAN. Навигационные камеры присматриваются и к небу в поисках облаков.

Автопортрет в окрестностях ложбины Marias Pass

31 июля 2015 года Curiosity побурил каменистую плитку «Buckskin» на участке осадочных пород с необычно высоким содержанием кремнезема. Такой тип породы впервые встретился Марсианской научной лаборатории (MSL) за три года пребывания в кратере Гейла. Взяв пробу грунта, ровер продолжил путь к горе Шарпа

(NASA/JPL)

Марсоход Curiosity у бархана Namib Dune

Крутой склон подветренной стороны Namib Dune поднимается под углом 28 градусов на высоту 5 метров. На горизонте виден северо — западный вал кратера Гейла

(панорамный снимок камеры Mastcam, 18 декабря 2015 года, Sol 1196)

Номинальный  технический  срок эксплуатации аппарата — два земных года — закончился 23 июня 2014 года на Sol-668, но Curiosity находится в хорошем состоянии и успешно продолжает исследования марсианской поверхности

Слоистые холмы на склонах Эолиды, таящие геологическую историю марсианского кратера Гейла и следы изменений окружающей среды Красной планеты, — будущее место работы Curiosity 

(NASA/JPL)

Curiosity продолжает поиск следов жизни, а также изучение геологической истории планеты. Для этиого марсоход оборудован множеством приборов, среди которых четыре спектрометра, а также российский прибор DAN для изучения «нейтронного альбедо» марсианской поверхности.

Он необходим для поиска залежей льда.

Мачта, или «голова» марсохода поднимается до 2,1 метра над поверхностью.

На мачте есть камеры, или «глаза», для стереопросмотра окружающей местности в цвете и лазер для испарения частиц породы на скалах на расстоянии до 7 метров с целью определения их элементного состава.

Инструменты Curiosity

Марсоход Mars Science Laboratory (MSL) Curiosity — роботизированный геолог и химик  в одном устройстве. Иллюстрация показывает, как ровер исследует скалу на Марсе при помощи набора инструментов

(NASA/JPL)

«Глаза» Марсианской научной лаборатории MSL Curiosity

(NASA/JPL)

Ровер вдвое длиннее и более чем в пять раз тяжелее любого аппарата НАСА, спущенного на поверхность Красной планеты. У этой научной лаборатории три пары колес диаметром 50 см, каждое из которых приводится в движение индивидуальной силовой установкой. 

Двойник Curiosity на рабочей площадке JPL «MarsYard»  в Лос-Анджелесе

Инженеры анализируют данные телеметрии и диагностических тестов, чтобы выявить проблему и восстановить нормальный режим работы марсохода

(NASA/JPL)

Передняя и задняя подвески марсохода снабжены специальными поворотными механизмами. Аппарат способен преодолевать препятствия высотой 75 см и делать полный разворот на 360 градусов на месте.

Сделанные Марсианской научной лабораторией открытия проливают свет на химическую активность современного Марса и свидетельствуют о благоприятных для жизни условиях, которые когда — то существовали на Красной планете.

Источник: https://cratergale.blogspot.com/p/msl-curiosity.html

Марсоход Spirit

Марсоход «Spirit» или «MER-A» (Mars Exploration Rover — A) — первый ровер НАСА из двух запущенных в проекте «Mars Exploration Rover».

Миссия стартовала 10 июня 2003 года, а  мягкая посадка на Марс  была совершена 4 января 2004 года, на три недели опередив посадку ровера «Opportunity» (MER-B), который был доставлен в другой район планеты. Срок работы ровера значительно превысил изначально планировавшиеся 90 солов (марсианских суток).

Это произошло потому, что  солнечные элементы марсохода эффективно очищались марсианским ветром, из-за чего марсоход «Спирит» эффективно работал долгое время.

1 мая 2009 года (спустя более чем 5 лет после посадки), марсоход  забуксовал в песчаной дюне.

Такие происшествия происходили и раньше, и следующие 8 месяцев специалисты NASA тщательно его анализировали: выполняли моделирование участка, программирование, продолжали попытки освободить марсоход.

Это продолжалось до 26 января 2010 года, когда было объявлено, что ровер «Spirit»  будет использоваться как стационарная платформа.

Читайте также:  Природа, растения и животные италии

Последний раз  связь с Землей состоялась 22 марта 2010 года, хотя специалисты «JPL» пытались  восстановить связь с марсоходом до 24 мая 2011 года. Церемония прощание со «Спиритом», состоявшаяся в штаб-квартире НАСА, транслировалась по NASA TV.

Конструкция и связь с Землей

Электроэнергия, необходимая для работы систем ровера, вырабатывалась панелями фотоэлементов, расположенных на «крыльях» аппарата и состоявших, для повышения надежности, из отдельных ячеек. Они были сконструированы специально для марсоходов «Спирит» и «Оппортьюнити», их конструкция предусматривала достижение максимальной освещенной площади.

Впервые при исследования Марса были использованы солнечные батареи с тройным слоем арсенида галлия.

Такие фотоэлементы могут преобразовать большее количество солнечного света, чем их устаревший вариант, установленный на марсоходе «Sojorner».

Солнечные батареи марсохода содержат три слоя фотоэлементов , что позволяло выработать больше электроэнергии для зарядки аккумуляторов. Ровер был укомплектован двумя литий-ионными аккумуляторами с ёмкостью 8 А*ч каждый.

Ровер «Спирит»управлялся блоком под названием «Мозговой центр», защищенным от действия низких температур.

В центре марсохода находился так называемый «Тепловой блок электроники», отвечавший за перемещение ровера, а также за управление манипулятором.

Управление осуществлялось бортовым компьютером, построенном на 32-битном радиационно-стойком процессоре RAD6000 с частотой 20 МГц. В его распоряжении было 128 мегабайт оперативной памяти и 256 мегабайт постоянной памяти на флэш-накопителе.

«Тепловой блок электроники» был установлен в модуле «Электроника марсохода», находившемся точно в центре аппарата. Тепло от обогревателей удерживалось золотой плёнкой на стенках блоков, ведь ночью температура на Марсе может упасть до — 96 °C.

В роли термоизоляциии выступал слой из аэрогеля — уникального материала, обладающего рекордно малой плотностью, высокой твёрдостью, прозрачностью, жаропрочностью, чрезвычайно низкой теплопроводностью и т. д.

За то, что плотность аэрогеля всего в 1,5 раза больше плотности воздуха его называют «твёрдым дымом».

Марсоходы миссии «MER» для связи с землей использовали спутник «Марс Одиссей», находящийся на орбите красной планеты. Окно общения с марсоходами  составляло 16 минут, после чего спутник уходил за горизонт; марсоход «Спирит» передавал данные орбитальному аппарату в течение 10 минут.

Основной объем научных данных передавался на Землю с помощью антенны марсохода, которая использовалась для связи со спутником «Марс Одиссей» в дециметровой части диапазона (UHF). Около 8 % всех данных было передано через марсианский спутник «Mars Global Surveyor», также применявшийся для ретрансляции сигнала на Землю, до его поломки в ноябре 2006 года.

Небольшое количество информации было передано непосредственно с марсохода на Землю с помощью антенны X-диапазона.

Цели исследований

Главной целью проекта было исследование осадочных пород, которые планировалось найти в кратерах Гусева, Эребус и соседних, где предположительно находилось древнее озеро или море. Однако классических осадочных пород найдено не было, в основном были найдены образцы, имеющие вулканическую природу.

Научные цели миссии заключались в поиске и описании разнообразных горных пород и типов почвы, свидетельствующих о присутствии в прошлом воды на поверхности планеты. Планировалось:

  • найти образцы с минералами, которые отложились при воздействии осадков, испарении воды, осаждении или гидротермальной деятельности;
  • исследовать минералы, горные породы и почву на месте посадки аппарата;
  • установить характер и вид геологических процессов, влиявших на формирование рельефа местности. Механизмы этих процессов могут заключаться в водной или ветровой эрозии, отложении осадков, гидротермальных явлениях, вулканизме и образовании кратеров;
  • провести калибровку и проверку исследования поверхности, сделанного Марсианским разведывательным спутником (MRO), что поможет в оценке точности и эффективности приборов, использующихся для исследования геологии Марса с орбиты;
  • заняться поиском железосодержащих минералов, выявлением и количественной оценкой относительных величин содержания определенных типов минералов, содержащих воду или сформировавшихся в воде, например, железосодержащих карбонатов;
  • классифицировать минералы и геологические текстуры, определить процессы их образования;
  • выяснить геологические причины, сформировавшие окружающую среду Марса в прошлом, когда на поверхности планеты находилась жидкая вода. Оценить то, насколько такие условия подходили для существования жизни.

Источник: http://allmars.ru/issledovaniya/ssha/zavershennye-missii/38-spirit

Марсоход Opportunity до сих пор молчит из-за пылевой бури на Марсе

На Марсе вот уже много недель бушует пылевая буря, которая покрыла практически всю планету. Из-за нее марсоход Opportunity не получает необходимого количества солнечного света, который преобразуется фотоэлементами в электричество. Ровер ушел в спящий режим и не сможет выйти из него до тех пор, пока атмосфера не очистится от пыли и солнечные лучи не достигнут поверхности Марса.

Когда это случится — пока неясно, поскольку масштаб бури лишь увеличивается, по всей видимости, в ближайшее время она не ослабнет. «Мы не можем связаться с ровером уже пару недель», — говорит Рей Арвидсон из Вашингтонского университета.

Он — один из руководителей миссии Mars Exploration Rover, которая изначально включала и брата-близнеца Opportunity — марсоход Spirit. Оба ровера прибыли на Марс в январе 2004 года и дружно приступили к изучению поверхности соседа Земли.

Opportunity работает уже много лет, и работал бы и дальше, если бы не сильное запыление разреженной атмосферы Марса. На графике ниже можно видеть, как запыленность воздуха влияет на количество энергии, получаемой ровером. Энергии система вырабатывает настолько мало, что не может сделать и отправить на Землю фотографию того, что происходит вокруг нее. Последний снимок был получен учеными 10 июня этого года. Марсоход изредка «просыпается» для того, чтобы проверить запасы энергии. Если они слишком малы, ровер снова уходит в сон.

Что касается Spirit, то этот марсоход, к сожалению, перестал подавать признаки жизни 22 марта 2010 года.

Через какое-то время после того, как шторм ослабнет, Opportunity должен проснуться, и если энергии будет достаточно, то Земля получит его сигнал. Затем, когда режим получения энергии станет оптимальным, марсоход снова вернется к работе, и кто знает, сколько месяцев или лет он сможет еще проработать.

Его «старший брат» Curiosity работает в нормальном режиме, поскольку имеет на борту автономный источник питания. Он регулярно присылает снимки Марса. На фотографиях, сделанных этим аппаратом после начала пылевой бури видно, что объекты на поверхности не отбрасывают теней. Это потому, что рептилоиды пакостничают атмосфера Марса запылена настолько, что свет Солнца очень слаб.

Эффект примерно такой же, как в очень облачный день на Земле, может быть, на Марсе он даже более сильный.

Ученые считают, что марсоход Opportunity переживет непогоду и уже через несколько недель будет радовать новыми данными о Красной планете.

Источник: https://habr.com/post/416475/

Все аппараты, коснувшиеся поверхности Марса

Практика показывает, что до Марса проще долететь, чем сесть на него. Судьба почти всех марсианских орбитальных станций вполне благополучна, а вот спускаемым модулям не вездо — они разбивались, теряли связь с Землей… А некоторые — ехали, и работали, и до сих продолжают слать на Землю бесценную информацию о климате, геологии и атмосфере Красной планеты.

«На пыльных тропинках далёких планет останутся наши следы», пелось в советской песне. Так и получилось.

Возьмём, к примеру, Марс: тропинки на нём действитльно пыльные: атмосфера там, конечно, менее плотная, чем на Земле, зато и сила тяжести вчетверо меньше, и движение разреженных газов легко поднимает над поверхностью Марса пылевые столбы, а иногда поднимаются глобальные (то есть на всю планету) пыльные бури.

Самая продолжительная за всю историю наблюдений длилась с сентября 1971 года по январь 1972, то есть почти половину земного года. Вот как выглядят «пыльные дьяволы» — смерчи, сняты марсоходом Curiosity.

Тропинки пыльные, и следы человека — в широком смысле — на Марсе есть.

Сейчас там находится около двух десятков рукотворных устройств: три советских аппарата, девять американских, один британский и «Скиапарелли», построенный специалистами Европейского космического агентства при участии российских учёных, и сошедшие с орбиты орбитальные станции: не обо всех известно, где они сейчас находятся, поэтому точное число искусственных аппаратов, которые сейчас заметает марсианский песок, назвать нельзя.

Марс-1 и Марс-2: первые, но неудачные

Первыми были Советы. В 1971 году поверхности Красной планеты достигли две автоматические межпланетные станции (АМС) Марс-2 и Марс-3. Каждая несла маленький марсоход ПрОП-М — коробочку на полозьях, привязанную к стационарному модулю 15-метровым кабелем: ПрОПы должны были дать первые снимки поверхности далёкой планеты, сделанные на месте.

Обоим не повезло: садились они в разгар той самой страшной, глобальной пылевой бури, в ноябре и декабре 1971 года. АМС Марс-2 разбилась при посадке, Марс-3 села без повреждений, и это была победа: первая успешная мягкая посадка на поверхность Марса в истории.

Станция даже начала передавать на Землю телесигнал, но через 14,5 секунд прекратила и больше не выходила на связь. Что случилось, до сих пор непонятно.

Однако миссия не была провалена полностью: во‑первых, тогда учёные получили первое изображение марсианской поверхности — вот такое:

А во-вторых, кроме посадочного модуля была орбитальная станция, и она честно проработала с декабря по август, передавая на Землю результаты измерений магнитного поля, состава атмосферы, фото- и ИК-радиометрию.

Советским марсоходам не удалось оставить след на Марсе. Выглядел бы он необычно: если бы ПрОПы поехали, они бы оставили за собой не колею, а лыжню. В начале семидесятых о том, как выглядит поверхность Марса, совсем ничего не знали, и советские инженеры предложили вариант с «лыжами» — на случай, если Марс — это снежные поля или бесконечные пески.

Первые успехи, миссия Viking

Первой полностью успешной миссией на Марс стали пары орбитальная станция-посадочный модуль американской миссии Viking. Первый Viking успешно опустился на поверхность и проработал больше шести лет.

Викинг работал бы и дальше, если бы не ошибка оператора при обновлении программы: аппарат навсегда замолчал в 1982-м. Второй «Викинг» продержался четыре года, пока работали аккумуляторы.

«Викинги» сделали и прислали на Землю первые фотографии Марса, в том числе панорманые и цветные.

Черно-белая панорама Марса, снятая станцией Viking II

Sojourner: первый ездок

С тех пор Марс не навещали, пока в 1996 году не поднялась ракета-носитель Delta II c аппаратами миссии Mars Pathfinder — посадочный модуль, впоследствии названный в честь Карла Сагана, и марсоход Sojourner.

Sojourner отлично поработал: расчитан он был на 7 солов (марсианских суток), а проработал больше 80, проехал 100 метров по поверхности, отправил на Землю множество фотографий поверхности Марса и результаты спектрометрии.

Первые неудачи NASA: Mars Surveyor 98

На эту программу возлагали большие надежды: две АМС — Mars Climate Orbiter для изучения Марса с орбиты и посадочный аппарат Mars Polar Lander.

После решили, что в аварии обоих аппаратов виноваты были не атмосферные возмущения и не ошибки операторов, а недостаток денег и спешка.

На спускаемом модуле к Марсу летели зонды-пенетраторы Deep Space 2, которые должны были, набрав скорость, войти в поверхность планеты и передать на Землю данные о составе грунта.

Неудача «Бигля»

В 2003 году аппарат на Марс отправили британцы: посадочный модуль Beagle 2, названный в память о корабле Чарльза Дарвина, должен был искать на Марсе следы жизни. миссия закончилась неудачей, связь с аппаратом была потеряна во время посадки. Только в 2015 году «Бигля» нашли на фотографиях и поняли причину аварии: у аппарата не развернулись солнечные батареи.

История успеха: Spirit, Opportunity, Curiosity

С 2004 года начинается история марсианского триумфа NASA.

Один за другим на Марс садятся четыра аппарата, три марсохода — Spirit, Opportunity, Curiosity, и автоматическая станция Phoenix — первая и пока единственная в марсианском приполярье.

Opportunity и Curiosity на ходу до сих пор. Марсианский ветер, сгубивший первые советские зонды, превратился в услужливого помощника: он сдувает пыль и песок с солнечных батарей Opportunity.

Три успешных ровера NASA (модели): Sojourner, Opportunity, Curiosity

Opportunity доказал, что на Марсе когда-то была вода, причём пресная, а список заслуг Curiosity слишком обширен, чтобы приводить его здесь. Самый большой и тяжёлый из аппаратов, когда-либо опускавшихся на поверхность Красной планеты, Curiosity огромен по сравнению с первыми советскими марсоходами — те были не больше микроволновки.

На Curiosity возлагают большие надежды: за оставшееся ему время аппарат должен сообщить учёным всё, что нужно знать для того, чтобы отправить на Марс людей.

Марсоход определяет состав почв, измеряет радиационный фон; он — и геолог, и климатолог, и немного биолог — по крайней мере он ищет в грунте и атмосфере свидетельства того, что на Марсе могут или могли протекать процессы, свойственные жизни как мы знаем её на Земле.

Последние гости на Марсе и в окрестностях — аппараты российско-европейской миссии ExoMars. Первая часть миссии, реализованная в прошлом году, состояла из орбитального и спускаемого блоков.

Орбитальный успешно занял своё место на орбите, а спускаемый аппарат Schiaparelli разбился, успев, однако, отправить последнее сообщение — результаты измерений и параметры своих систем. В 2020 году к Марсу направится вторая часть миссии — спускаемый аппарат и марсоход.

В их конструкции учтут педостатки, приведшие к аварии Schiaparelli, поэтому шансов долететь у них, кажется, больше.

Источник: https://www.PopMech.ru/technologies/384782-vse-apparaty-kosnuvshiesya-poverhnosti-marsa/

Ссылка на основную публикацию