Тёмная материя во вселенной

Темная материя и темная энергия

Все, что мы видим вокруг себя (звезды и галактики) это не более 4-5% от всей массы во Вселенной!

Состав Вселенной

Согласно космологическим теориям современности, наша Вселенная состоит всего из 5% обычной, так называемой барионной материи, которая образует все наблюдаемые объекты; 25% темной материи, регистрируемой благодаря гравитации; и темной энергии, составляющей целых 70% от общего объема.

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского.

В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Многие современные ученные убеждены, что исследования направленные на изучение темной энергии и материи, вероятно, помогут получить ответ на глобальный вопрос: что же ожидает нашу Вселенную в будущем?

Сгустки размером с галактику

Темная материя представляет собой субстанцию, состоящую, скорее всего, из новых, еще неизвестных в земных условиях частиц и обладающую свойствами присущими самому обыкновенному веществу.

Например, она способна также как обычные вещества собираться в сгустки и участвовать в гравитационных взаимодействиях.

Вот только размеры этих так называемых сгустков могут превышать целую галактику или даже скопление галактик.

Подходы и методы исследования частиц темной материи

Из чего состоит Вселенная

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера.

Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит  в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными.

И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Распределение энергии во Вселенной

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Природа темной материи и черных дыр

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени.

В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается.

Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной.

Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума.

Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную.

Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

Источник: http://SpaceGid.com/zagadochnaya-i-nevidimaya-temnaya-energiya-i-materiya.html

Темная материя и темная энергия

Объекты глубокого космоса > Темная материя и темная энергия

Что такое темная материя и темная энергия Вселенной: структура пространства с фото, объем в процентах, влияние на объекты, исследование, расширение Вселенной.

Около 80% пространства представлено материалом, который скрыт от прямого наблюдения. Речь идет о темной материи – вещество, которое не производит энергию и свет. Как же исследователи поняли, что оно доминирует?

В 1950-х годах ученые начали активно заниматься изучением других галактик. В ходе анализов заметили, что Вселенная наполнена большим количеством материала, чем удается уловить на «видимый глаз». Сторонники темной материи появлялись каждый день. Хотя прямых доказательств ее наличия не было, но теории росли, как и обходные пути наблюдения.

Видимый нами материал называют барионной материей. Она представлена протонами, нейтронами и электронами. Полагают, что темная материя способна совмещать в себе барионную и небарионную материю. Чтобы Вселенная оставалась в привычной целостности, темная материя обязана находиться в количестве 80%.

Неуловимое вещество может быть невероятно сложным для поисков, если вмещает барионное вещество. Среди претендентов называют коричневых и белых карликов, а также нейтронные звезды.

Разницу могут прибавлять и сверхмассивные черные дыры. Но они должны были вносить больше влияния чем то, что видели ученые.

Есть и те, кто думает, что темная материя должна состоять из чего-то более непривычного и редкого.

Комбинированное изображение телескопа Хаббл, отображающее призрачное кольцо темной материи в скоплении галактик Cl 0024+17

Большая часть научного мира полагает, что неизвестное вещество представлено в основном небарионной материей. Наиболее популярный кандидат – WIMPS (слабо контактирующие массивные частицы), чья масса в 10-100 раз превосходит показатели протона. Но их взаимодействие с обычной материей слишком слабое, из-за чего сложнее находить.

Сейчас очень внимательно рассматривают и нейтралино – массивные гипотетические частички, превосходящие по массе нейтрино, но отличаются медлительностью. Их пока не нашли. В качестве возможных вариантов также учитывают меньшую нейтральную аксиому и нетронутые фотоны.

Еще один вариант – устаревшие знания о гравитации, которые требуют обновления.

Невидимая темная материя и темная энергия

Но, если мы чего-то не видим, как доказать, что оно существует? И с чего мы решили, что темная материя и темная энергия – это нечто реальное?

Масса крупных объектов вычисляется по их пространственному перемещению. В 50-х годах исследователи, рассматривавшие галактики спирального типа, предполагали, что приближенный к центру материал будет двигаться намного быстрее удаленного.

Но выяснилось, что звезды перемещались с одинаковой скоростью, а значит, было намного больше массы, чем думали ранее. Изученный газ в эллиптических типах показал те же результаты.

Напрашивался один и тот же вывод: если ориентироваться только на видимую массу, то галактические скопления давно бы разрушились.

Модель распределения темной материи во Вселенной 13.6 миллиардов лет назад.

Альберт Эйнштейн смог доказать, что крупные вселенские объекты способны изгибать и искажать световые лучи. Это позволило использовать их как естественную увеличительную линзу. Исследуя этот процесс, ученым удалось создать карту темной материи.

Получается, что большая часть нашего мира представлена все еще неуловимым веществом. Вы узнаете больше интересного о темной материи, если посмотрите видео.

Если говорить о материи, то темная безусловно лидирует по процентному соотношению. Но в целом она занимает лишь четверть всего. Вселенная же изобилует темной энергией.

С момента Большого Взрыва пространство запустило процесс расширения, что продолжается и сегодня. Исследователи полагали, что в итоге начальная энергия закончится и она замедлит свой ход.

Но далекие сверхновые демонстрируют, что пространство не останавливается, а набирает скорость.

Все это возможно только в том случае, если количество энергии настолько огромное, что преодолевает гравитационное влияние.

Темная материя и темная энергия: разъяснения загадки

Мы знаем, что Вселенная, по большей части, представлена темной энергией. Это загадочная сила, которая приводит к тому, что пространство увеличивает скорость расширения Вселенной. Еще одним таинственным компонентом выступает темная материя, поддерживающая контакт с объектами только при помощи гравитации.

Ученые не могут разглядеть темную материю в прямом наблюдении, но эффекты доступны для изучения. Им удается уловить свет, изогнутый гравитационной силой невидимых объектов (гравитационное линзирование). Также замечают моменты, когда звезда совершает обороты вокруг галактики намного быстрее, чем должна.

Все это объясняется наличием огромного количества неуловимого вещества, воздействующего на массу и скорость. На самом деле, это вещество покрыто тайнами. Получается, что исследователи скорее могут сказать не, что перед ними, а чем «оно» не является.

На этом коллаже показаны изображения шести разных галактических скоплений, сделанные при помощи космического телескопа НАСА Хаббл. Кластеры были обнаружены во время попыток исследовать поведение темной материи в галактических скоплениях при их столкновении

Темная материя… темная. Она не производит свет и не наблюдается в прямой обзор. Следовательно, исключаем звезды и планеты.

Она не выступает облаком обычной материи (такие частички называют барионами). Если бы барионы присутствовали в темной материи, то она проявилась бы в прямом наблюдении.

Исключаем также черные дыры, потому что они выступают гравитационными линзами, излучающими свет. Ученые не наблюдают достаточного количества событий линзирования, чтобы вычислить объем темной материи, которая должна присутствовать.

Хотя Вселенная – огромнейшее место, но началось все с наименьших структур. Полагают, что темная материя приступила к конденсации, чтобы создать «строительные блоки» с нормальной материей, произведя первые галактики и скопления.

Чтобы отыскать темную материю, ученые применяют различные методы:

  • Большой адронный коллайдер.
  • инструменты, вроде WNAP и космическая обсерватория Планка.
  • эксперименты прямого обзора: ArDM, CDMS, Zeplin, XENON, WARP и ArDM.
  • косвенное обнаружение: детекторы гамма-лучей (Ферми), нейтринные телескопы (IceCube), детекторы антивещества (PAMELA), рентгеновские и радиодатчики.

Углубляемся в тайну темной материи и темной энергии

Еще ни раз ученые не смогли в буквальном смысле увидеть темную материю, потому что она не контактирует с барионной, а значит, остается неуловимой для света и прочих разновидностей электромагнитного излучения. Но исследователи уверены в ее присутствии, так как наблюдают за воздействием на галактики и скопления.

Читайте также:  Литосфера. рельеф земли (географическая оболочка)

Стандартная физика говорит, что звезды, расположенные на краях галактики спирального типа, должны замедлять скорость. Но выходит так, что появляются звезды, чья скорость не подчиняется принципу расположения по отношению к центру. Это можно объяснить лишь тем, что звезды ощущают влияние от невидимой темной материи в ореоле вокруг галактики.

Наличие темной материи также способно расшифровать некоторые иллюзии, наблюдаемые во вселенских глубинах. Например, присутствие в галактиках странных колец и световых дуг. То есть, свет от отдаленных галактик проходит сквозь искажение и усиливается невидимым слоем темной материи (гравитационное линзирование).

Пока у нас есть несколько идей о том, что собою представляет темная материя. Главная мысль – это экзотические частицы, не контактирующие с обычной материей и светом, но имеющие власть в гравитационном смысле. Сейчас несколько групп (одни используют Большой адронный коллайдер) работают над созданием частиц темной материи, чтобы изучить их в лабораторных условиях.

Другие думают, что влияние можно объяснить фундаментальной модификацией гравитационной теории. Тогда получаем несколько форм гравитации, что существенно отличается от привычной картины и установленных физикой законов.

Расширяющаяся Вселенная и темная энергия

Ситуация с темной энергией еще более запутанная и само открытие в 1990-х годах стало непредсказуемым.

Физики всегда думали, что сила притяжения работает на замедление и однажды может приостановить процесс вселенского расширения. За измерение скорости взялось сразу две команды и обе, к своему удивлению, выявили ускорение.

Это словно вы подбрасываете яблоко в воздух и знаете, что оно обязано упасть вниз, а оно удаляется от вас все дальше.

Стало ясно, что на ускорение влияет некая сила. Более того, кажется, чем шире Вселенная, тем больше «власти» получает эта сила. Ученые решили обозначить ее темной энергией.

Если темную материю можно хоть как-то объяснить, то по поводу темной энергии нет вообще ничего. Некоторые правда полагают, что это пятая фундаментальная сила – квинтэссенция.

Однако, известные свойства темной энергии согласуются с космологической константой, созданной Альбертом Эйнштейном в общей теории относительности. Константа выступает отталкивающей силой, противодействующей гравитации и удерживающей пространство от разрушения. Позже Эйнштейн отказался от нее, потому что наблюдения выявили процесс расширения Вселенной (она рассчитывалась для статичной).

Но, если сейчас добавить темную энергию в качестве константы для ускорения расширения Вселенной, то может объяснить этот процесс. Но все это так и не дает понимания того, почему эта странная сила вообще существует.

(5

Источник: http://v-kosmose.com/temnaya-materiya-vselennoy/

Темная материя и темная энергия

Объекты глубокого космоса > Темная материя и темная энергия

Темная материя  и темная энергия – это то, что не видно глазу, однако их присутствие доказано в ходе наблюдений за Вселенной. Миллиарды лет назад наша Вселенная родилась после катастрофического Большого Взрыва. По мере того, как ранняя Вселенная медленно охлаждалась, в ней начала развиваться жизнь.

В результате сформировались звезды, галактики и остальные видимые ее части. Размеры нашей Вселенной просто ошеломительны. К примеру, одного Солнца достаточно для освещения и обогрева миллиона планет, аналогичных Земле. При этом Солнце является звездой среднего размера, а одна только наша галактика состоит из 100 миллиардов звезд.

Это количество превышает количество песчинок на небольшом пляже. Однако это еще не все.

График распределения темной материи и темной энергии сегодня и 13.7 млрд лет назад

Как известно, Вселенная состоит из нескольких миллиардов галактик, где существует самая разная материя.  Возможно ли, чтобы какая-то из этих материй была невидима глазу.

Скорее всего, поскольку результаты недавно проведенных исследований показали, что мы можем видеть лишь десятую часть Вселенной.

Значит, более 90% материи человек просто не способен рассмотреть даже с использованием специального оборудования. Астрономы называют такую материю темной.

Изучение темной материи

Доказательством существования темной материи является ее тяжесть – сила гравитации, которая, словно клей, сохраняет целостность Вселенной. Все части Вселенной взаимно притягиваются друг к другу.

Благодаря этому ученые смогли рассчитать общую массу видимой Вселенной, а также показатели гравитационных сил.

В ходе расчетов был выявлен существенный дисбаланс в этих параметрах, что дало основание полагать, что существует некая невидимая материя, обладающая определенной массой и также подверженная воздействию гравитации.

Кроме того, доказательством существования темной материи стало ее гравитационное влияние на другие объекты, в том числе на траекторию движения звезд и галактик. Было обнаружено, что многие галактики вращаются быстрее, чем ожидалось. Согласно теории гравитации А. Эйнштйна, они должны разлетаться в разные стороны. Однако что-то невидимое будто удерживает их вместе.

Также темная материя может повлиять на траекторию распространения света.

Было исследован феномен гравитационного линзирования, который состоит в том, что плотные объекты способны отражать свет дальних объектов, меняя траекторию световых потоков.

Это приводит к искажению изображения и возникновению миражей звезд и галактик. Ученые фиксируют эти световые изгибы, но не могут назвать природу этого явления.

Массивный астрономический гало-объект

Темная материя в нашей Вселенной может существовать в виде массивных астрономический гало-объектов (МАГО). К ним относятся планеты, луны, коричневые и белые карлики, пылевые облака, нейтронные звезды и черные дыры.

Как правило, они слишком малы, чтобы их свет был обнаружен человеком, однако их существование может быть вычислено через гравитационное воздействие на световые потоки. В последние годы астрономы обнаружили несколько типов МАГО-объектов.

Они могут состоять как из обычных барионных частиц, так и аксинов, нейтринов, вимпилов и суперсимметричной темной материи.

Исследование темной материи и темной энергии

Поскольку интерес к темной материи продолжает расти, появляются новые инструменты, помогающие в получении более обширных представлений об этом таинственном феномене. Так, космический телескоп Хаббл предоставил весьма ценную информацию о размере и массе видимой Вселенной. Эти данные стали первым и очень важным шагом на пути к изучению истинного количество темной материи во Вселенной.

На этом коллаже показаны изображения шести разных галактических скоплений, сделанные при помощи космического телескопа НАСА Хаббл. Кластеры были обнаружены во время попыток исследовать поведение темной материи в галактических скоплениях при их столкновении.

Важно понимать, что устройство Вселенной не является случайным, и с помощью Хаббла можно детально представить ее структуру. Доподлинно известно, что галактики располагаются в кластерах, а эти кластеры –  в суперкластерах. Сверхскопления космических тел находятся  в губчатой структуре с обширными пустотами. Очевидно, формирование такой структуры обусловлено весьма конкретными причинами.

Рентгеновские телескопы, которые имеются в обсерватории Чандра, помогают в изучении огромных облаков горячего газа в этих скоплениях. Ученые выяснили, что в этих областях должна присутствовать и темная материя, иначе газ будет утекать из кластера. Кроме того, в данный момент ведется разработка новых инструментов, которые, в конце концов, помогут разглядеть эту темную сторону Вселенной.

Источник: http://o-kosmose.net/temnaya-materiya-vselennoy/

Темная материя

Тёмная материя – «скелет» Вселенной и самая большая загадка современной физики. В нашей и других галактиках содержится большое количество темной материи, которую мы не можем наблюдать непосредственно, но, о существовании которой мы знаем благодаря её гравитационному воздействию на орбиты звёзд в галактиках.

Тёмная материя — гипотетическая форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним, это свойство делает невозможным её прямое наблюдение. Однако, возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам. Темная материя обладает весом и окружает галактики гигантским ореолом, который нам невидим.

Количество темной материи во Вселенной значительно превышает количество обычного вещества. Вселенная состоит из: 74% темной энергии, 22 % — темной материи, 3,6% — межгалактического газа и 0,4% — звёзд.

Количество темной энергии в космосе превосходит энергию всех звёзд и галактик.

Проанализировав данные со спутника WMAP, учёные пришли к выводу: три четверти Вселенной состоит из энергии чистого вакуума.

Темная энергия создает антигравитационное поле, которое расталкивает галактики прочь друг от друга и заставляет их разлетаться с возрастающей скоростью.

В нашей галактике Млечный Путь темная материя весит в 10 раз больше, чем все звёзды вместе взятые.

Несмотря на невидимость этой неизвестной материи, учёные, используя метод непрямого наблюдения, смогли её «увидеть»: темная материя искривляет звёздный свет подобно стеклу, поэтому её можно обнаружить по степени создаваемого оптического искажения.

Тёмная материя и темная энергия родились почти сразу же после Большого взрыва13,7 млрд. лет назад. Это две разные субстанции с различными свойствами. Тёмная энергия равномерно разлита по Вселенной и отвечает за её расширение.

Тёмная материя после Большого взрыва стала собираться в «комки», из которых «вылепились» галактики.

Когда какая-то часть тёмной материи «утяжелилась» протонами и нейтронами, то есть стала обычной материей, из неё образовались звёзды, а внутри этих звёзд из первоначальных элементов Вселенной (водорода, гелия и дейтерия) были «выплавлены» и все металлы, образовавшие вещество планет.

Ученые полагают, что тёмная энергия может «растащить» нашу Вселенную до состояния абсолютной пустыни.

Одна из гипотез предполагает, что расширяющая сила действия тёмной энергии со временем начнет превосходить по мощи все остальные силы во Вселенной.

В результате могут быть разорваны все гравитационно связанные структуры, преодолены силы электростатических и внутриядерных взаимодействий, затем произойдёт распад микрочастиц и мир будет полностью уничтожен.

Существует и другой, не менее апокалиптический прогноз. Если вдруг что-то побеспокоит тёмную энергию, вызовет лишь небольшое её колебание, то вполне вероятно, что, как и 13,7 млрд. лет назад, может последовать новый Большой взрыв с последующим созданием новой Вселенной.

Недавно ученые обнаружили, что вокруг нашей планеты образовалась неизвестная темная материя, которая каким-то образом воздействует на гравитационное поле Земли, меняя массу нашей планеты.

Во время доклада на конференции Американского геофизического союза, которая проходила в Сан-Франциско в декабре 2013 года, ученый из Техасского университета в Арлингтоне Бен Харрис, описал метод измерения массы Земли при помощи спутников системы GPS, которые вращаются по известным орбитам вокруг планеты. Сделанные таким способом измерения расходятся с измерениями массы Земли методами, официально признанными Международным астрономическим союзом. После анализа данных, собранных в течение девяти месяцев спутниками навигационных систем GLONASS, GPS и Galileo, ученые рассчитали, что измеренная ими масса Земли превышает официальное значение на величину от 0,005 до 0,008 процента.

Что означает такое расхождение? Несоответствие результатов измерений может являться следствием влияния ореола или кольца темной материи, окружающей Землю.

Расчеты Бена Харриса показывают: для того, чтобы вызвать такое отклонение измерений массы Земли, ореол невидимой темной материи должен иметь толщину в 190 км и ширину 70 тысяч км, располагаясь в плоскости экватора нашей планеты.

Гипотетическое присутствие скопления темной материи в окрестностях Земли может послужить объяснением изменения скорости движения некоторых космических аппаратов в определенных зонах космоса неподалеку от нашей планеты. Возможно, причиной аномальных изменений скорости полета космических аппаратов является гравитационное воздействие ореола невидимой темной материи?

Читайте также:  Природные ресурсы исландии

Компьютерная модель распределения материи нитей во Вселенной. На вставке показана область космического пространства, размером в 10 световых лет, в центре которой находится квазар, видны части нитей, состоящие из обычной и темной материи.

Существует теория «космической паутины», которая опутывает Вселенную, соединяя все космические объекты невидимыми нитями, состоящими из таинственной темной материи.

Астрономам из Калифорнийского университета в Санта-Круз, удалось получить первые снимки «космической паутины» — сети из материи, соединяющей все объекты во Вселенной, используя 10-метровый телескоп обсерватории на Гавайях.

На представленном ими изображении видно голубую туманность, размерами 2 миллиона световых лет, которая окружает чрезвычайно яркий квазар UM287. Высокоэнергетическое излучение квазара заставляет светиться материю туманности в определенном диапазоне длин волн, что позволило ученым детально изучить структуру и определить некоторые свойства нитей «космической паутины».

Сделанные учеными снимки являются ключевым моментом в будущих поисках других экзотических космических объектов, известных под названием «темные галактики». Согласно имеющейся теории, «темные галактики» — это узлы «космической паутины», относительно небольшие области пространства, где материя нитей паутины имеет чрезвычайно высокую плотность.

Ученые убеждены, что дальнейшие поиски нитей «космической паутины», «темных галактик» и других экзотических космических объектов, имеющих отношение к «темной» стороне Вселенной рано или поздно дадут результаты, которые расширят область наших знаний о строении Вселенной и о происходящих в ней процессах.

Источник: https://zhitanska.com/content/temnaya-materiya/

Просто о сложном: что такое темная материя и где ее искать

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Эксперимент LUX, в ходе которого ученые пытались с помощью бассейна, заполненного 400 кг жидкого ксенона, поймать частички темной материи — WIMPs, слабо взаимодействующие массивные частицы, — ни к чему не привел.

Сейчас к запуску готовится новый эксперимент — DARWIN, в котором планируется использовать 25-тонную массу ксенона для детектирования WIMP (см. рис. 1).

С другой стороны, эксперимент ADMX, направленный на обнаружение других (во много раз более легких по массе) кандидатов на роль темной материи, гипотетических аксионов, тоже пока не дал никаких результатов.

В результате такого молчания детекторов возникает совершенно естественный вопрос: почему мы ищем именно эти частицы, почему не что-то другое? Почему эта масса не может скрываться в других известных нам частицах или объектах? Не может ли быть так, что мы вообще идем на поводу у кодового названия, то есть не может ли быть так, что никакой темной материи и вовсе нет, просто теория гравитации дает сбой и не работает на таких масштабах? Как ученые могут быть так уверены в себе?

Дело в том, что современная наука, особенно в области космологии, работает по дедуктивному методу Шерлока Холмса. Изначально может быть огромное количество вероятных и невероятных, обычных и экзотических, вписывающихся в современную теорию и противоречащих ей гипотез, объясняющих какое-либо явление.

Однако объективным судьей, отсеивающим все невозможные варианты гипотез, является самое простое наблюдение и эксперимент. Соответствие наблюдениям — самый базовый критерий, которому должна удовлетворять любая научная теория.

Иными словами, если отбросить все невозможные гипотезы, то оставшаяся, сколь бы парадоксальной и невероятной она ни была, и является истиной. Наука работает так, как происходит расследование преступления, где каждая улика и алиби подозреваемых имеют решающий вес.

Здесь я хочу как раз рассказать об этих отсеянных гипотезах и объяснить, почему такие длительные и дорогостоящие поиски WIMP и аксионов имеют под собой очень твердые основания.

Первые наблюдения, Или место преступления

Впервые странное явление обнаружил американский астроном Цвикки в 1933 году. Он исследовал скопление галактик Волос Вероники (Coma Cluster) и обнаружил странное расхождение. Дело в том, что измерить массу галактики можно двумя способами.

В первом случае можно просто посчитать количество галактик в скоплении, прикинуть их примерную массу по количеству звезд (зная примерно массу каждой) и просто сложить массы всех галактик. У него получилось примерно 1013 (в массах Солнца).

Во втором случае можно измерить скорости галактик: чем больше скорость, тем больше гравитационная сила, действующая на эту галактику, и тем больше общая масса скопления. Таким образом можно снова с некоторой точностью оценить массу скопления, и в этот раз у Цвикки получилось 5×1014, то есть в 50 раз больше.

Подозреваемый №1: межзвездная пыль/газ

Подобное расхождение на тот момент не вызвало большого резонанса в научном мире, так как наблюдений было в принципе очень мало и, соответственно, не хватало информации о межзвездной пыли, газе, карликовых звездах. Тогда считалось, что эта дополнительная масса может скрываться именно в них.

В своей работе 1970 года Вера Рубин и Кент Форд изучали для галактики Андромеды зависимость скорости звезд от их отдаленности от центра галактики (так называемую кривую вращения).

Так как основная часть звезд сконцентрирована вблизи центра галактики, логично предположить, что чем дальше звезда от центра, тем меньше должна быть гравитационная сила, действующая на нее, и тем меньше должна быть ее скорость.

Однако оказалось, что для звезд на периферии такой закон не выполняется и кривая выходит на константу (см. рис. 2).

Это означало, что основная масса, которая влияет на вращение звезд, не просто скрыта от нас. Она распределена вплоть до периферии и, возможно, еще дальше. Позже подобные кривые были прорисованы для различных галактик с абсолютно тем же результатом.

Для многих эллиптических галактик эти кривые не просто не спадали, но и возрастали, то есть чем дальше звезда находилась от центра, тем больше была ее скорость. Получается, что большая часть массы (в среднем более 90%) заключена не в звездах и эта скрытая масса распределена далеко за областью галактического диска в виде сферического гало (см. рис.

 3). (Гало — оптический феномен, светящееся кольцо вокруг объекта — источника света. — Прим. ред.)

Межзвездная пыль и газовые облака теперь уже никак не могли объяснить наличие скрытой массы.

Дело в том, что так или иначе и пыль, и газ имеют внутреннее взаимодействие: из-за трения излучения частички пыли или молекулы газа теряли бы энергию, постепенно скапливаясь с периферии в центр.

И в результате мы бы имели не огромное гало, простирающееся далеко за пределы самой галактики, а скопление вещества в центре. Поэтому гипотеза газопылевой природы опровергается.

Подозреваемый №2: слабо излучающие астрофизические объекты

Следующей по простоте очевидной гипотезой было то, что скрытая часть массы может быть заключена в каких-нибудь известных астрофизических объектах (англ.

MACHO — Massive astrophysical compact halo object), таких как слабые или потухшие звезды, белые, коричневые карлики, нейтронные звезды, черные дыры или даже массивные планеты типа Юпитера.

Ввиду своей малости и слабой светимости эти объекты не видны в телескоп, и, вполне возможно, их так много, что они и обеспечивают наличие этой скрытой массы.

Когда слабосветящийся массивный объект пересекает наш луч зрения, то видимый объект, находящийся позади, например звезда, становится ярче из-за гравитационного линзирования света (см. рис. 4). Такое явление называется гравитационным микролинзированием.

Наличие таких MACHO должно было бы привести к огромному количеству событий микролинзирования.

Однако наблюдения орбитального телескопа Hubble показали, что таких событий необычайно мало и если такие объекты MACHO и есть, то их масса составляет меньше 20% от массы галактик, но никак не 95%.

Более того, все эти опровержения позже были подкреплены наблюдениями космического реликтового фона.

Дело в том, что эти наблюдения вводят четкое ограничение на число барионов (протоны, нейтроны и все, что состоит из кварков), которые могли родиться в ранней Вселенной в период нуклеосинтеза (образования атомных ядер. — Прим. ред.).

В частности, это говорит нам о том, что та барионная материя (все светящиеся звезды, газ, пылевые облака) — это уж, по крайней мере, большая часть всей барионной материи в нашей Вселенной и, соответственно, скрытая масса не может состоять из барионов.

Подозреваемый №3: модифицированные теории

Вернемся к началу рассказа: а что, если никакой дополнительной массы нет? Что, если у нас просто немножко по-другому работает теория гравитации или законы Ньютона?

В самом начале мы говорили, что чем больше гравитационная сила, действующая на объект (в данном случае — на галактику или отдельную звезду), тем больше ее ускорение (закон Ньютона) и, соответственно, скорость, так как центростремительное ускорение пропорционально квадрату скорости. Но что, если подкорректировать закон Ньютона? В 1983 году израильский физик Мордехай Милгром предложил гипотезу MOND (Modified Newtonian dynamics), в которой закон Ньютона был несколько cкорректирован для случая, когда ускорения достаточно малы (10–8 см/с2).

Такой подход хорошо объяснял кривые вращения, полученные Рубин и Фордом, и возрастающие кривые вращения для эллиптических галактик. Однако для скоплений темной материи, где ускорения галактик куда больше ускорения единичных звезд, MOND не вносил никаких поправок, и вопрос оставался открытым.

Другой подход был предложен в многочисленных попытках модифицировать теорию гравитации.

Сейчас существует широкий класс таких теорий, называемый параметризованным постньютоновским формализмом, где каждая отдельная теория описывается своим набором 10 стандартных параметров, объясняющих отклонение от обычной гравитации.

Какие-то из этих теорий действительно снимают проблему скрытой массы, однако ведут к другим проблемам. Например, к массивным фотонам или хроматичности гравитационной линзы (зависимости отклонения света от частоты), что, конечно же, не подтверждается наблюдениями. В любом случае, ни одна из этих теорий до сих пор не подтверждена наблюдениями.

Таким образом, из всевозможных гипотез осталась только одна возможная (хотя изначально экзотическая), не противоречащая эксперименту: темная материя — это какие-то частицы небарионной природы (то есть не состоящие из кварков). Таких кандидатов в теории существует очень много (см. рис.

 5), однако их подразделяют на две основные группы — холодную и горячую темные материи.

Подозреваемый №4: горячая темная материя

Горячая темная материя — это легкие частицы, движущиеся со скоростями, близкими к скорости света. Самым очевидным кандидатом на эту роль является самое обычное нейтрино.

Эти частицы имеют очень малые массы (раньше считалось, что их масса равна нулю), рождаются в недрах звезд при различных термоядерных процессах и летят, почти ни с чем не взаимодействуя.

Однако оказалось, что при том количестве нейтрино, которое есть у нас во Вселенной, для объяснения темной материи необходимо, чтобы их масса была около 10 электронвольт. Но эксперименты ограничивают массу нейтрино сверху до долей одного эВ, что в сотни раз меньше.

После отказа от обычных нейтрино появилась теория о наличии так называемых стерильных нейтрино — гипотетических частиц, возникающих в теории суперслабых взаимодействий.

Однако такие частицы в экспериментах пока не обнаружены, и факт их существования сейчас под вопросом. Космологические наблюдения последних лет показали, что если горячая темная материя и есть, то она составляет не больше 10% от всей темной материи.

Дело в том, что различные типы темной материи предлагают различные сценарии формирования галактик (см. рис. 6).

В сценарии горячей темной материи (top-down) в результате эволюции сперва формируются большие куски материи, которые затем схлопываются в отдельные мелкие скопления и в итоге превращаются в галактики.

В сценарии холодной темной материи (bottom-up) сперва формируются мелкие карликовые галактики и скопления, которые затем сцепляются и образуют более крупные.

Наблюдения и компьютерное моделирование показывают, что в нашей Вселенной реализуется именно этот сценарий, что указывает на явное доминирование холодной темной материи.

Подозреваемый №5: холодная темная материя

Гипотеза с холодной темной материей на сегодняшний день является самой распространенной в ученом сообществе. Гипотетические частицы холодной темной материи подразделяются на две категории — слабо взаимодействующие массивные частицы (WIMPs — weakly interacting massive particles) и слабо взаимодействующие легкие частицы (WISPs — weakly interacting slim particles).

Читайте также:  Развивающие занятия для детей на тему зима

WIMPs — это в основном частицы из теории суперсимметрии (суперсимметричные партнеры обычных частиц) с массами больше нескольких килоэлектронвольт, такие как фотино (суперпартнер фотона), гравитино (суперпартнер гипотетического гравитона) и так далее.

Существование одного из главных претендентов на роль WISP — аксионоподобной частицы (ALP) — опровергли недавние наблюдения орбитального гамма-телескопа FERMI/LAT.

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить.

В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы.

Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке — это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс.

Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи.

Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.

Не пропустите следующую лекцию

Источник: https://theoryandpractice.ru/posts/13911-dark-matter

Тёмная материя

В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники.

Из наблюдений выяснилось, что видимая масса скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин.

Стало понятно, что некая тёмная материя и тёмная энергия наполняют основной массой и галактическое пространство, и любое другое.

Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

  • Скорости вращения галактик не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.
  • Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих
  • Двойные галактические системы и скопления обладали большей долей тёмной материи
  • В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.

Вокруг нашего светила, на расстояниях до 13 тыс. св. лет, больших объёмов тёмной материи не выявлено, хотя, по расчётам, концентрация её должна быть порядка 0,5 кг на объём Земли.

Обсерватория «Планк» в 2013 году опубликовала данные о составе наблюдаемой Вселенной. Обычная (барионная) материя составляет 4,9%, тёмная – 26,8%, а тёмная энергия – 68,3%. Из этого очевидно, что тёмная материя и тёмная энергия — основа нашей Вселенной.

Что входит в тёмную материю (теории)

  • Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
  • Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
  • Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10-2 – 10-3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
  • Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс — 10-1 – 10-4 эВ.
  • Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу — 10-5эВ.
  • Суперсимметричные частицы. Теоретически существует одна такая частица — LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях . Ею может быть гравитино, фотино, хиггсино и некоторые другие.
  • Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
  • Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

Классификация

Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы.

В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились.

Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:

  1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.
  2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материяв любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения  опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.
  3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время  перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.

Изучение тёмной материи

Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.

  1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.
  2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.
  3. Расчёт слабого гравитационного линзирования. Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

Фактическое обнаружение частиц

Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.

  1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.
  2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

Всё усложняющиеся наблюдения учёных за нашим миром, позволяют сделать вывод, что большая часть его нам неведома. 95% всего наполнения Вселенной – интересная загадка, которую ещё предстоит решить.

Ещё по теме:

Источник: http://light-science.ru/fizika/tyomnaya-materiya.html

Что такое тёмная материя Вселенной?

Британские исследователи из радиоастрономической обсерватории Джодрелл Бэнк полагают, что наша Вселенная на две трети состоит из тёмной материи (Dark Matter). По другим оценкам обычное вещество составляет не более 10% от реально содержащейся во Вселенной материи.

Можно сказать, что 90% материи во Вселенной представляет собой загадку. Это та материя, которую невозможно наблюдать в телескоп, которая не отражает лучи света и не излучает фотоны ни в каком диапазоне электромагнитного спектра.

Фактически получается, что существует иной тип массы, некое невидимое вещество, из которого построена Вселенная.

Одним из существенных доказательств наличия тёмной материи во Вселенной можно считать данные, полученные в нулевые годы 21-го века на космическом телескопе «Хаббл» с помощью гравитационного линзирования. Мингкук Джеймс Джи (Myungkook James Jee), Х.

Форд (Holland Ford) и другие исследователи из университета Джона Хопкинса, наблюдая за столкновением галактик, находящихся от нас на расстоянии в пять миллиардов световых лет, обнаружили, что их окружает кольцо из тёмной материи диаметром в 2,6 миллиона световых лет.

Положение тёмной материи в этой области удалось вычислить, регистрируя слабые искажения излучения от более далёких галактик, которые находятся (по линии взгляда с Земли) за сталкивающимися звёздными системами.

К настоящему времени установлено, что самые малые непрерывно существующие сгустки тёмной материи занимают пространство в тысячу световых лет, а масса таких фрагментов в десятки раз превышает массу Солнца.

Впервые же о незримой материи заявил в 1930-е годы швейцарский астроном Фриц Цвикки (Fritz Zwicky). Он заметил, что скопление галактик в созвездии Волосы Вероники удерживается вместе более сильным гравитационным полем, чем-то, которое должно быть, исходя из видимой массы вещества в данной области.

При детальном рассмотрении выяснилось, что светящегося вещества в этих скоплениях галактик было в несколько раз меньше, чем необходимо для их совместного нахождения за счёт силы тяготения.

Поскольку закон тяготения никто не отменял, то ещё в те далёкие годы предположили, что существует некое невидимое вещество.

Современные исследования, проведённые с помощью орбитального зонда WMAP (Wilkinson Microwave Anisotropy Probe), показывают, что обычного вещества во Вселенной около 5%; 25% приходится на тёмную материю, а остальные 70% – на так называемую тёмную энергию (Dark Energy). Этот вывод сделали эксперты Принстонского университета, проанализировав данные с зонда WMAP, который был запущен американским космическим агентством NASA в 2001 году.

Однако в последнее время появились гипотезы, указывающие на то, что тёмной материи может и не быть.

Почётный профессор Торонтского университета Джон Моффат (John Moffat) и Джоэл Браунштейн (Joel Brownstein) из Канадского института теоретической физики разработали теорию модифицированной гравитации, которая полностью объясняет наблюдаемое поведение скоплений галактик.

Два канадских физика вполне обходятся без тёмной материи. Они ввели в свою теоретическую разработку так называемые гравитоны, возникающие из вакуума, причём наиболее интенсивно гравитоны рождаются вблизи больших масс.

Из чего следует, что в центре галактики (где сосредоточены крупные массы) два объекта притягиваются друг к другу сильнее, чем если бы они находились на её окраине.

* * *
Как бы то ни было, любая запутанная ситуация рано или поздно проясняется. Так случится и с тёмной материей: с ней неизбежно разберётся Время. На то оно и Верховный Судия.

Источник: https://ShkolaZhizni.ru/world/articles/17957/

Ссылка на основную публикацию